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Abstract

We study comparative statics of Nth-degree risk increases within a large class of problems

that involve bidimensional payoffs and additive or multiplicative risks. We establish necessary

and suffi cient conditions for unambiguous impact of Nth-degree risk increases on optimal decision

making. We develop a simple and intuitive approach to interpret these conditions : novel notions

of directional Nth-degree risk aversion that are characterized via preferences over lotteries

1 Introduction

Consumers select how much to save, how much to invest in different assets, how long to work, and

how much to spend on medical care under a great degree of uncertainty. Firms invest large amounts

of money in risky endeavors. Policy-makers allocate scarce resources to projects with highly un-

certain returns (e.g. environmental and health care projects). Two natural questions that arise in

these and other similar problems are the following: 1) If a decision maker faces a riskier environ-

ment, under what conditions will he or she increase or decrease the optimal level of exposure to the
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risk? and 2) What is the interpretation of these conditions, which frequently involve establishing

the sign of two or more high-order partial derivatives of the payoff function? The focus of the early

literature analyzing these questions was on establishing the impact of a fairly narrow class of risk

changes —mostly, increases in risk as defined by Rothschild and Stiglitz (1970)—and on interpreting

the resulting conditions on the payoff function within the specific context of the problem being

analyzed. More recently, the work of Louis Eeckhoudt has advanced our knowledge about these

important questions in at least two fundamental ways. First, Eeckhoudt and colleagues have eval-

uated the impact of a larger class of risk increases —namely, Nth-degree stochastically dominated

shifts (Jean, 1980) and Nth-degree risk increases as defined by Ekern (1980)— in different frame-

works, including the classical problems of precautionary saving (Eeckhoudt and Schlesinger, 2008),

precautionary labor supply (Chiu and Eeckhoudt, 2010), portfolio choice (Chiu et al., 2012), and

production under output-price uncertainty (Chiu et al., 2012).1 Second, Eeckhoudt and colleagues

have introduced a new approach to characterize risk attitudes via preferences over pairs of simple

lotteries (Eeckhoudt and Schlesinger, 2006, Eeckhoudt et al., 2007, Eeckhoudt et al., 2009, Denuit

et al., 2010a, and Chiu et al., 2012). In particular, we now know that the signs of the derivatives of

the utility function are closely tied to a preference to disaggregate harms across lottery outcomes.

In this way, this new approach has established a link between the decision maker’s attitudes towards

risk (i.e. preferences over simple lotteries) and his or her optimal response to changes in risk.

The focus of the recent work and much of the earlier literature has been on determining un-

ambiguous comparative statics results for a given set of individuals. In this type of exercise, it is

established that all expected utility maximizers within a given set (i.e. a set of utility functions) will

select the optimal response to an increase in risk (or will rank lotteries) in a particular unambiguous

manner. An alternative line of inquiry, taken on this paper, is to determine the maximal set of

expected utility maximizers for which an increase in risk induces a particular behavior. This alter-

native type of exercise not only establishes unambiguous comparative statics results for a given set

of individuals, but it also reveals how a particular behavioral response to a risk increase is related

to the preferences of the decision maker. It is only by performing this type of analysis that behavior

in different settings can be pinned down to a maximal set of individuals and, in particular, that

the optimal response to changes in risk in a specific problem can be linked directly to the decision

1Other work evaluating economic consequences of Nth-degree risk increases includes Baiardi and Menegatti’s

(2011) analysis of the trade-off between (dirty) production and environmental-quality and Courbage and Rey’s (2012)

analysis of the optimal allocation of a national health budget.
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maker’s choice between lottery pairs. In this paper, we use this latter approach to study a large

class of problems that involve 1) a bivariate utility function, 2) a linear constraint that links the

two attributes that enter the decision maker’s payoff function, and 3) Nth-degree stochastically

dominated shifts, with particular emphasis on increases in Nth-degree risk à la Ekern (1980).

We begin the analysis in the next section by revisiting Ekern’s (1980) results. Following the

methods of Rothschild and Stiglitz (1970), Ekern (1980) characterized Nth-degree risk increases.

We prove a dual result along the lines of Denuit et al. (1999). This result is the main ingredient

for characterizing necessary and suffi cient conditions for unambiguous comparative statics of risk

within our framework and also for the interpretation of our results.

In Section 3 we perform the comparative statics analysis within the mentioned framework

and for two different scenarios, one in which the risk is additive and another one in which the

risk is multiplicative in the decision variable. In each case, we provide necessary and suffi cient

conditions for an unambiguous impact of Nth-degree risk increases and we compare our conditions

with existing conditions in the literature. As an illustration, we show that no decision maker that

views the attributes as goods (i.e. with a positive marginal utility) will always increase the level

of the decision variable when faced with a first-degree multiplicative-risk increase. Similarly, no

decision maker with diminishing marginal utility (i.e. risk averse) will always increase the level of

the decision variable when faced with a Rothschild-Stiglitz multiplicative-risk increase. While these

results are intuitive in the classical portfolio choice problem, we show that they hold much more

generally within our framework and that they generalize to increases in Nth-degree risk.

Section 4 develops a simple and intuitive interpretation of the previously obtained conditions.

We propose concepts of additive and multiplicative directional Nth-degree risk aversion; these are

characterized via preferences for harms disaggregation across outcomes of 50-50 bivariate lotteries.

The harms we consider involve unidimensional increases in Nth-degree risk together with bidimen-

sional non-stochastic shifts in the attributes. These concepts of directional Nth-degree risk aversion

include as special cases the concept of prudence analyzed by Eeckhoudt and Schlesinger (2006) and

the concept of cross-prudence analyzed by Eeckhoudt et al. (2007). For a fixed level of one of the

attributes, the lotteries we study are isomorphic to a set of lotteries studied by Eeckhoudt et al.

(2009) in the case of additive risks (generalized by Denuit et al. 2010a to the multivariate case)

and to the lotteries studied by Chiu et al. (2012) in the case of multiplicative risks. Our main

contribution is to characterize the preference for harms disaggregation (i.e. to establish necessary

and suffi cient conditions). Specifically, we characterize the situations where Nth-degree changes in
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risk have an unambiguous impact on the optimal decision in terms of Nth-degree preference for

harms disaggregation.

We provide some concluding remarks in Section 5. The proofs for all the results in the paper in

terms of Nth-degree risk increases are collected in Appendix A. In Appendix B, we establish and

prove analogous results for more general Nth-degree stochastically dominated shifts.

2 A Preliminary Result

Let us start by revisiting the notion of increases in risk proposed by Ekern (1980).

Definition 1 (Ekern) Let α̃1 and α̃2 denote two random variables with values in [0, B] . For

i = 1, 2, we denote by F [1]α̃i the distribution functions and, for k = 1, 2, ... we define the functions

F
[k+1]
α̃i

on R+ by

F
[k+1]
α̃i

(x) =

∫ x

0
F
[k]
α̃i

(t)dt for x ∈ R+.

We say that α̃2 is an increase in Nth-degree risk over α̃1, and we denote it by α̃2 <N α̃1, if

F
[N ]
α̃2

(x) ≥ F [N ]α̃1
(x) for all x ∈ [0, B] where the inequality is strict for some x and F [k]α̃2

(B) = F
[k]
α̃1

(B)

for k = 1, ..., N.

For example, an increase in 2nd-degree risk coincides with Rothschild and Stiglitz’s (1970)

mean preserving increase in risk, while an increase in 3rd-degree risk coincides with a mean and

variance preserving increase in risk that Menezes et al. (1980) labeled ‘increase in downside risk’.

An increase in 4th-degree risk is equivalent to what Menezes and Wang (2005) call an ‘increase in

outer risk’.

Ekern (1980) characterizes increases in Nth-degree risk: he establishes that α̃2 is an increase

in Nth-degree risk over α̃1 (as defined above) if and only if2 E [q(α̃2)] > E [q(α̃1)] for all N times

continuously differentiable real valued function q such that (−1)N q(N) > 0 where q(N) = dN q
dαN

. In

particular, this means that Ekern (1980) shows that if a function q is such that (−1)N q(N) > 0 then

E [q(α̃2)] > E [q(α̃1)] for all pair (α̃1, α̃2) such that α̃2 <N α̃1. The following Lemma, established

by Denuit et al. (1999) in a somewhat different form, extends this last result by also showing the

2 It is more common to define Nth-degree risk increases in terms of a utility function u (α) as follows: α̃2 is an

increase in Nth-degree risk over α̃1 if and only if E [u(α̃2)] < E [u(α̃1)] for all N times continuously differentiable real

valued utility function u such that (−1)(N+1) u(N) > 0. Our equivalent characterization is somewhat more natural

when dealing with the effect of risk increases on optimally chosen variables (i.e. on marginal utility).
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reverse implication.3 It characterizes the set of N times continuously differentiable functions for

which E [q(α̃2)] ≥ E [q(α̃1)] for all pair (α̃1, α̃2) where α̃2 is an increase in Nth-degree risk over α̃1

and shows that these functions are exactly those such that (−1)N q(N) ≥ 0.4

Lemma 1 (Denuit, De Vylder, and Lefevre) Let q be a given real valued function that is N

times continuously differentiable on R+. The following are equivalent.

1. For all pair (α̃1, α̃2) such that α̃2 <N α̃1, we have E [q(α̃2)] ≥ E [q(α̃1)] .

2. For all x ≥ 0, we have (−1)N q(N)(x) ≥ 0.

This result pins down how expected utility maximizers in a given set rank increases in risk and

it also reveals how a particular behavioral response to a risk increase is related to the preferences

of the decision maker. As an illustration, for N = 2, we retrieve the classical result that a risk

averse agent (i.e. an agent who dislikes mean preserving spreads) is an agent whose utility function

is concave. Lemma 1 will prove to be essential in Sections 3 and 4.

Remark. Lemma 1 can be generalized to Nth-degree stochastically dominated shifts. Such

shifts do not restrict the first N − 1 moments of the distributions to be equal. Following Jean

(1980), and using the notation in Definition 1, α̃2 is dominated by α̃1 in the sense of Nth-degree

stochastic dominance, and we denote it by α̃2 <NSD α̃1, if F
[N ]
α̃2

(x) ≥ F
[N ]
α̃1

(x) for all x ∈ [0, B],

where the inequality is strict for some x, and F [k]α̃2
(B) ≥ F [k]α̃1

(B) for k = 1, ..., N − 1. Lemma 1 then

applies to Nth-degree stochastic dominance shifts when 1) α̃2 <N α̃1 is replaced by α̃2 <NSD α̃1

and 2) the condition (−1)N q(N)(x) ≥ 0 is replaced by the condition (−1)k q(k)(x) ≥ 0 for k =

1, ..., N . As an illustration, for N = 1, 2, we retrieve the classical result that 1st-degree stochastic

dominance is characterized by non-decreasing utility functions and 2nd-degree stochastic dominance

is characterized by non-decreasing and concave utility functions. Appendix B provides a precise

statement and a proof of these results.

3Ekern’s (1980) result, but not Lemma 1, also implies that α̃2 <N α̃1 is necessary to have unanimity of ranking

within the class of utility functions q such that (−1)N q(N) > 0, so the information provided by the two results is

somewhat different. We thank an anonymous referee for pointing this out.
4Denuit et al.’s (1999) result is expressed in terms of maximal generators for s-convex orders and established for

non-necessarily regular functions by the introduction of the concept of Nth degree divided difference. The authors

remark that for regular functions the conditions on Nth-degree divided difference are equivalent to conditions on the

Nth derivative. In Appendix A we propose a direct and simpler proof of the result when the functions are assumed

to be regular.
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3 Optimal Decision and Increasing Risk

The problem that we analyze follows closely the setup in Dardanoni (1988). The decision maker has

an increasing, strictly concave and infinitely differentiable two-dimensional utility function U(y, z)

defined for y and z positive. As usual, we denote by U (i,j)(y, z) the (i, j)th cross partial derivative of

the utility function. Uncertainty is described by a probability space (Ω,F , P ) where Ω describes the

set of possible states of the world, F is the set of measurable events and P is a probability measure.

The decision maker has the possibility to buy a quantity x of an asset that has a random payoff

µ̃ ≥ 0 in terms of the second attribute at a (deterministic) cost p > 0 in terms of the first attribute.

The initial endowment of the decision maker in terms of the first attribute is deterministic and

denoted by K. The initial endowment in terms of the second attribute is random and denoted by

α̃ ≥ 0. Both random variables α̃ and µ̃ are assumed to be bounded above. The decision maker’s

problem PU,K,p(α̃, µ̃) is then the following

MaxxE [U (K − xp, xµ̃+ α̃)] . (1)

The first-order necessary condition and the second-order suffi cient condition for optimality,

assuming an interior solution, are given by

E [g (x, α̃, µ̃)] = 0 (2)

E [gx (x, α̃, µ̃)] < 0 (3)

with g (x, α, µ) = −pU (1,0) (K − xp, xµ+ α) + µU (0,1) (K − xp, xµ+ α) and where gx (x, α, µ) =

p2U (2,0) (K − xp, xµ+ α)− 2pµU (1,1) (K − xp, xµ+ α) + µ2U (0,2) (K − xp, xµ+ α) . By strict con-

cavity of U, this last quantity is always negative. The first order condition is then necessary and

suffi cient.

In the analysis that follows we will alternatively need the following Inada-type conditions:

Assumption A1 The utility function U is such that limz→0
U(0,1)(y,z)

U(1,0)(y,z)
=∞ and limz→∞

U(0,1)(y,z)

U(1,0)(y,z)
=

0.

Assumption A2 The utility function U is such that zU
(0,1)(y,z)

U(1,0)(y,z)
is unbounded.

It is classical to assume that limz→0 U (0,1)(y, z) =∞ and limz→∞ U (0,1)(y, z) = 0 which means

that the second attribute is necessary for the agent’s survival and that the agents approach satiation

for large quantities of that attribute. Assumption A1 is a little bit stronger and limits the possibil-

ities for substitutability between the two attributes. A low level of the second attribute increases
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the marginal utility for that attribute faster than for the other one and satiation with respect to the

second attribute does not mean satiation with respect to the first one. For example, Assumption A1

is satisfied by homothetic utility functions satisfying the classical Inada conditions in the direction

of both attributes, i.e. limz→0 U (0,1)(y, z) = ∞, limz→∞ U (0,1)(y, z) = 0, limy→0 U (1,0)(y, z) = ∞

and limy→∞ U (1,0)(y, z) = 0. With a separable utility function U(y, z) = u(y) + v(z), Assumption

A1 is equivalent to the classical Inada conditions on v.

Assumption A2 means that U must satisfy either limz→0 z
U(0,1)(y,z)

U(1,0)(y,z)
= ∞ (which is a stronger

condition than the first condition in Assumption A1) or limz→∞ z
U(0,1)(y,z)

U(1,0)(y,z)
= ∞. For example,

with a separable utility function, Assumption A2 can be rewritten as zv′(z) is unbounded. This is

the case for all CRRA functions except log.

The problem PU,K,p has found many important applications, including

• The 2-date optimal saving model with either time-non-separable utility (e.g. Leland, 1968,

Sandmo, 1970) or time-separable utility (e.g. Kimball, 1990, Eeckhoudt and Schlesinger,

2008, Chiu et al., 2012) and uncertainty surrounding the rate-of-return on saving or the

future income endowment.

• The canonical portfolio problem with one risky asset and one risk-free asset (e.g. Rothschild

and Stiglitz, 1971, Chiu et al., 2012).5

• The optimal allocation of income to medical expenditures and consumption of non-medical

goods (e.g. Dardanoni and Wagstaff, 1990), and the optimal allocation of a national health

budget (Courbage and Rey, 2012), when either the return on medical expenditures or the

consumer’s health status is uncertain.

• The trade-off between leisure and consumption, with wage income or non-wage income risks

(e.g. Block and Heineke, 1973, Tressler and Menezes, 1980, Chiu and Eeckhoudt, 2010).

• The trade-off between (dirty) production and environmental-quality, with uncertainty sur-

rounding the damages that the productive activity generates or the level of environmental

quality itself (e.g. Baiardi and Menegatti, 2011).

5The canonical portfolio problem arises as a special case of this framework in which the attributes are perfect

substitutes (setting U(y, z) = v(y + z) and redefining the variables), making it, in essence, a univariate problem.

Assumption A2 is always satisfied in this setting.
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• The private provision of public goods under uncertainty surrounding the contributions of

others (Sandler et al., 1987, Keenan et al., 2006).

• The leisure/production trade-off of an entrepreneur facing price uncertainty in a competitive

environment (Rothschild and Stiglitz, 1971, Chiu et al., 2012).

In some of the above cases, like in the 2-date optimal saving model or the canonical portfolio

problem, the asset is a classical financial asset. In other cases, the asset corresponds to the mecha-

nism that transforms money into health (health care) or leisure into money (labor) or production

into environmental quality, etc.

The objective in these articles has been the evaluation of how increases in risk affect the optimal

value of the choice variable. While the earlier literature focused almost exclusively on 2nd-degree

stochastic dominance shifts and, in particular, on mean preserving increases in risk as defined by

Rothschild and Stiglitz (1970), a number of recent papers have evaluated the effect of Nth-degree

stochastically dominated shifts and, in particular, of increases in Nth-degree risk as defined by Ekern

(1980) (e.g. Eeckhoudt and Schlesinger, 2008, Chiu and Eeckhoudt, 2010, Baiardi and Menegatti,

2011, Chiu et al., 2012, Courbage and Rey, 2012). In the present paper, we will also focus on the

general Nth-degree risk framework, considering separately the case where the endowment in terms

of the second attribute α̃ is random and the case where the asset’s payoff µ̃ is random. Analogous

results for Nth-degree stochastic dominance shifts can be found in Appendix B.

3.1 Uncertainty Over the Endowment

Suppose that µ̃ = µ is deterministic and remains unchanged while considering a change in the

second attribute initial endowment from α̃1 to α̃2, where α̃2 is an increase in Nth-degree risk over

α̃1. Furthermore, let x∗1 and x
∗
2 respectively denote the solutions of PU,K,p(α̃1, µ) and PU,K,p(α̃2, µ).

In order to provide some intuition for the results that follow, let us consider the classical 2-date

precautionary saving problem with a separable utility function U of the form U(y, z) = u(y)+v(z).

In such a setting, it is well known that an agent raises his optimal saving when adding a zero-mean

risk (to a deterministic second period initial endowment) if and only if his marginal utility of future

consumption is convex, v(3) ≥ 0 (see e.g. Gollier, 2001). In our more general setting where U

is not separable and where the initial endowment α̃1 is not necessarily deterministic, the analysis

should lead us to introduce conditions that involve cross derivatives as well as the cost p
µ of the

second attribute in terms of the first attribute in order to reflect the trade-off between these two
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attributes. The following proposition provides a characterization of the utility functions for which

any increase in Nth-degree risk increases the optimal level of the choice variable.

Proposition 1 Let U be a given increasing, strictly concave and infinitely differentiable utility

function satisfying Assumption A1. Let us consider p and µ as given. The following properties are

equivalent:

1. For all initial endowment (K, α̃1), any increase in Nth-degree risk over the second attribute

initial endowment from α̃1 to α̃2 increases the optimal level of the choice variable, i.e. x∗2 ≥ x∗1.

2. For all (y, z) , we have (−1)N
(
−pU (1,N) (y, z) + µU (0,N+1) (y, z)

)
≥ 0.

Therefore, for example, for α̃1 = k1 ∈ R∗+, if α̃2 is an increase in first-degree risk over α̃1 of the

form α̃2 = k2, for a positive constant k2 < k1, and if U (1,1) ≥ 0 then x∗2 ≥ x∗1 (remark that, by

concavity of U, U (0,2) is nonpositive). As a second example, for α̃1 = k1 ∈ R∗+, if α̃2 is an increase

in second-degree risk over α̃1 of the form α̃2 = k1 + ε̃, where ε̃ is a mean zero random variable, and

if U (1,2) ≤ 0 and U (0,3) ≥ 0 then x∗2 ≥ x∗1.

If the problem under consideration corresponds to the classical 2-date precautionary saving

problem with endowment risk and with a separable utility function U of the form U(y, z) = u(y) +

v(z), we obtain that x∗1 ≤ x∗2 for all pair (α̃1, α̃2) such that α̃1 4N α̃2 if and only if (−1)Nv(N+1)(z) ≥

0. The "if" part of this result has been established by Eeckhoudt and Schlesinger (2008). We

emphasize that our condition (−1)Nv(N+1)(z) ≥ 0 is necessary and suffi cient.6

3.2 Uncertainty Over the Asset’s Payoff

Suppose now that α̃ = α is deterministic and remains unchanged while considering a change from

µ̃1 to µ̃2, where µ̃2 is an increase in Nth-degree risk over µ̃1. Let x
∗
1 and x

∗
2 respectively denote the

solutions of PU,K,p(α, µ̃1) and PU,K,p(α, µ̃2). Furthermore, it will be useful to define a measure of

Nth-degree relative risk aversion (in attribute z) as follows (see e.g. Chiu et al. 2012)

RN (y, z) ≡ −zU
(0,N+1)(y,z)

U(0,N)(y,z)
.

When the utility function U (y, z) is separable we will write this function as RN (z) , which for

N = 1 corresponds to the standard measure of relative risk aversion and for N = 2 corresponds to

the measure of relative prudence (Kimball, 1990).
6Similarly, in the context of problems with non-separable utility and an additive risk, Chiu and Eeckhoudt (2010)

and Baiardi and Menegatti (2011) established the suffi ciency of the condition in Proposition 1.
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The following Proposition establishes the analog of Proposition 1 for an increase in multiplicative

risk.

Proposition 2 Let U be a given increasing, strictly concave and infinitely differentiable utility

function satisfying Assumption A2. The following properties are equivalent:

1. For all initial endowment (K,α) and all asset cost and payoff (p, µ̃1) such that x
∗
1 ≥ 0, any

increase in Nth-degree risk over the asset’s payoff from µ̃1 to µ̃2 increases the optimal level of

the choice variable, i.e. x∗2 ≥ x∗1.

2. For all (y, z) , we have (−1)N U (1,N) (y, z) ≤ 0, RN (y, z) ≤ N and (−1)N U (0,N) (y, z) ≥ 0.

The necessary and suffi cient conditions in Proposition 2 appear to be similar to a number

of results established previously in the context of different applications of our model.7 There is,

however, a crucial difference. Consider again the 2-date saving problem with separable utility, but

now with rate-of-return risk. This problem was analyzed by Rothschild and Stiglitz (1971) in the

context of increases in 2nd-degree risk and more recently by Eeckhoudt and Schlesinger (2008) for

more general increases in risk. In both papers, the authors show that when future labor income is

zero (in our setting α = 0, so z = xµ) and the consumer is risk averse (v(2)(z) < 0), he will save

more in response to an increase in 2nd-degree risk if R2 (z) ≥ 2. As our proof makes it clear, this

condition is indeed necessary and suffi cient for an increase in savings when α = 0. But Proposition

2 also shows that the assumption of zero labor income does not come without loss of generality.

Once we consider the more general case, the necessary and suffi cient conditions for an increase in

savings become R2 (z) ≤ 2 and v(2)(z) ≥ 0. In other words, any risk-averse consumer will decrease

savings in response to higher risk for some initial endowment levels.8

In essence, this result corresponds to Rothschild and Stiglitz’s (1971, p. 72) conclusion that

"no risk averse investor will always increase his holdings of risky assets when their variability

increases." Proposition 2 implies that this important result holds much more generally in the

7For example, Rothschild and Stiglitz (1971), Keenan et al. (2006), Eeckhoudt and Schlesinger (2008), Chiu and

Eeckhoudt (2010), Baiardi and Menegatti (2011), Chiu et al. (2012), and Courbage and Rey (2012).
8Note that the condition RN (y, z) ≤ N is coupled with (−1)N U (0,N) (y, z) ≥ 0 which, for N = 2, excludes risk

averse consumers. In the special case that α = 0 this additional condition is no longer necessary. Therefore, assuming

risk aversion, (−1)2 U (0,2) (y, z) < 0, leads to a change in the direction of the inequality of the first condition, which

becomes R2 (y, z) ≥ 2, as established by Rothschild and Stiglitz (1971) and Eeckhoudt and Schlesinger (2008) in the

context of the 2-date saving problem with rate-of-return risk.
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context of problem PU,K,p(α, µ̃) and generalizes the conclusion by stating that no agent for which

(−1)N U (0,N) (y, z) < 0 will always increase the demand for the asset in problem PU,K,p(α, µ̃) when

facing an increase in Nth-degree risk.

As another illustration, consider the static labor supply problem analyzed by Chiu and Eeck-

houdt (2010). In this context y represents leisure, the choice variable x is labor supply, µ represents

wage income, and α represents non-wage income. Chiu and Eeckhoudt (2010) show that the condi-

tions (−1)N U (1,N) (y, xµ+ α) ≤ 0 and (−1)N
(
xµU (0,N+1) (y, xµ+ α) +NU (0,N) (y, xµ+ α)

)
≥ 0

are suffi cient for an increase in Nth-degree risk in wage income to increase the supply of labor. Note

that the second condition does not correspond to our second condition in Proposition 2. Indeed,

the derivatives are not taken at the same point and the two conditions coincide only for α = 0.

In fact, if we divide by U (0,N) (y, xµ+ α) the condition introduced by Chiu and Eeckhoudt (2010)

we obtain a condition on the concept of proportional N-th degree relative risk aversion, which is

defined as −zU
(0,N+1)(y,z+α)

U(0,N)(y,z+α)
. Instead, our condition relies on the concept of N-th degree relative risk

aversion, which is more natural and easier to interpret. Our Proposition implies, in particular, that

imposing the Chiu and Eeckhoudt (2010) condition on the proportional N-th degree relative risk

aversion for all α is equivalent to imposing a condition on the usual concept of N-th degree relative

risk aversion as well as imposing (−1)N U (0,N)(y, z) ≥ 0. This means that Proposition 2 of Chiu

and Eeckhoudt (2010) cannot be applied in order to characterize the situations where the supply

of labor is increased in response to a risk increase at all initial endowment levels α. Indeed, the

authors assume that (−1)N U (0,N)(y, z) ≤ 0, which is not consistent with the necessary condition

(−1)N U (0,N)(y, z) ≥ 0. This implies, for instance, that a mean preserving spread in wage income

cannot always increase the supply of labor for a consumer with diminishing marginal utility of

consumption.

These results then suggest that, when considering a risk increase on the asset’s payoff, it may

be more natural to analyze the conditions under which the agent decreases his level of exposure

to the asset’s risk. While Proposition 2 characterized the situations where any increase in risk on

the asset’s payoff implies an increase in the choice variable, the following result characterizes the

situations where any increase in risk on the asset’s payoff implies a decrease in the choice variable.

Corollary 1 Let U be a given increasing, strictly concave and infinitely differentiable utility func-

tion satisfying Assumption A2. The following properties are equivalent:

1. For all initial endowment (K,α) and all asset cost and payoff (p, µ̃1) such that x
∗
1 ≥ 0, any
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increase in Nth-degree risk over the asset’s payoff from µ̃1 to µ̃2 decreases the optimal level

of the choice variable, i.e. x∗1 ≥ x∗2.

2. For all (y, z) , we have (−1)N U (1,N)(y, z) ≥ 0, RN (y, z) ≤ N and (−1)N U (0,N)(y, z) ≤ 0.

For example, if we consider the 2-date optimal saving problem with rate-of-return risk and a

separable utility function, we obtain that any increase in N-th degree risk leads to a decrease of

the optimal saving (i.e. x∗2 ≤ x∗1 for all µ̃1 4N µ̃2) if and only if, for all z, R
N (z) ≤ N with

(−1)N v(N)(z) ≤ 0, which corresponds to the conditions established by Eeckhoudt and Schlesinger

(2008) in a model without labor income (α = 0).9 Again, we remark that our conditions are

necessary and jointly suffi cient and that they hold for all (y, z). Still in a one dimensional setting,

we retrieve the following well-known results in the context of the classical portfolio choice problem

(see e.g. Rothschild and Stiglitz, 1971, Hadar and Seo, 1990, Gollier, 2001, p. 61):

• A risk averse agent decreases his optimal demand for the risky asset at all wealth levels and

when facing an increase in 1st-degree risk in the asset’s payoff if the degree of relative risk

aversion is no greater than one, R1 (z) ≤ 1 (or equivalently, 0 ≤ R1 (z) ≤ 1 since the utility

function is assumed to be nondecreasing and concave).

• A risk averse agent decreases his optimal demand for the risky asset at all wealth levels

and when facing an increase in 2nd-degree risk in the asset’s payoff if the degree of relative

prudence is no greater than two, R2 (z) ≤ 2 (or equivalently, 0 ≤ R2 (z) ≤ 2 when the utility

function is assumed to be prudent).

In summary, this section establishes precisely the necessary and suffi cient conditions for unam-

biguous comparative statics of changes in risk in a large class of problems. Our next objective is

to develop a simple and intuitive approach to interpret these conditions.

4 Lottery Choices and Optimal Exposure to Risk

In this section we show that the optimal response to changes in risk can be characterized via

preferences over particular classes of lottery pairs. For any two bidimensional lotteries A and B,

9Suppose, for example, that relative risk aversion is constant: v(z) = (1− γ)−1 z1−γ . Then, if γ < 1 an Nth-degree

risk increase in the rate-of-return will decrease savings. For γ > 1, an Nth-degree risk increase in the rate-of-return

will increase savings for some wealth levels and it will decrease savings for other wealth levels.
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we use the notation A � B to denote the individual’s preference relation "lottery A is preferred to

lottery B." We first consider the case of additive risks and then evaluate the case of multiplicative

risks.

4.1 Additive Risks

Consider two attributes with nonnegative initial quantities y and z, and imagine a lottery in which

with a 50 percent chance risk α̃1 is added to z and with a 50 percent chance risk α̃2 is added to z,

where α̃2 is an increase in Nth-degree risk over α̃1. Denote this lottery by [(y, z + α̃1) ; (y, z + α̃2)].

Now consider the following location experiment: the consumer is told that she must accept the

bundle
(
x1ρy, x1ρz

)
in tandem with one of the lottery outcomes of her choice and the bundle(

x2ρy, x2ρz
)
in tandem with the other lottery outcome, where

(
x1, x2, ρy, ρz

)
are constants and

x2 > x1; to which outcome will she affect each bundle?

The preceding question consists in evaluating the following pair of lotteries,

Aa =
[(
y + x2ρy, z + x2ρz + α̃2

)
;
(
y + x1ρy, z + x1ρz + α̃1

)]
(4)

Ba =
[(
y + x1ρy, z + x1ρz + α̃2

)
;
(
y + x2ρy, z + x2ρz + α̃1

)]
.

Clearly, the answer depends on the magnitude and the direction of
(
ρy, ρz

)
. We therefore propose

the following definition,

Definition 2 We say that preferences display Nth-degree risk aversion in the direction of
(
ρy, ρz

)
if, for all (y, z, x1, x2) ∈ R4+ such that x2 > x1 and for all pair of random variables (α̃1, α̃2) such

that α̃2 is an increase in Nth-degree risk over α̃1, we have Aa � Ba.

To understand these concepts it might be useful to consider a few special cases that were

analyzed by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2007).10 Suppose first that

ρy = 0, ρz > 0 and N = 1 or 2, in which case, we retrieve the univariate definition of risk aversion

and of prudence in attribute z as in Eeckhoudt and Schlesinger (2006). Still with N = 1 or 2 and

taking ρy > 0 and ρz = 0, we recover Eeckhoudt et al.’s (2007) definitions of correlation aversion

and of cross-prudence. As explained by Eeckhoudt et al. (2007), in all of these cases the consumer

10Eeckhoudt et al. (2007) restrict themselves to the case x1 = 0. All our results could be generalized further, along

the lines of Eeckhoudt et al.’s (2009) results in a univariate framework, by considering the case in which x1 is a first

order stochastically dominated shift over x2.
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views the risks as ‘mutually aggravating,’so she prefers to disaggregate the harms across outcomes

of the lotteries. Similarly, for general N and general directions, our lottery ordering generalizes

these concepts by capturing a preference to disaggregate harms across lottery outcomes, where

the harms are represented by an Nth-degree risk increase (α̃2 <N α̃1) and by a shift from x2 to

x1 < x2 in the direction of
(
ρy, ρz

)
(notice that we refer to the bundle

(
x1ρy, x1ρz

)
as a harm, in

the direction of
(
ρy, ρz

)
, relative to the bundle

(
x2ρy, x2ρz

)
even though the latter bundle would

be perceived as more favorable in the usual sense when ρy and ρz are negative).

The following proposition establishes precisely what this lottery preference means in an expected

utility framework.

Proposition 3 Let U be a given increasing, strictly concave and infinitely differentiable utility

function on R2+. The preferences represented by U display Nth-degree risk aversion in the direction

of
(
ρy, ρz

)
if and only if (−1)N f (0,N)(y, z) ≥ 0 where f is defined on R2+ by f (y, z) = ρyU

(1,0)(y, z)+

ρzU
(0,1)(y, z).

There are, in fact, two effects that determine the consumer’s bivariate preference for harm

disaggregation. The condition for risk aversion in the direction of
(
ρy, ρz

)
can be decomposed into

1) a ‘Nth-degree risk aversion in z effect’, captured by the term ρzU
(0,N+1), and 2) a ‘Nth-degree

correlation aversion’effect, captured by the term ρyU
(1,N).

Generalizing the work of Eeckhoudt et al. (2009) (i.e. the case with ρy = 0 and ρz > 0 and for

a fixed value of y), Denuit et al. (2010a) established the “if”part of this Proposition for the case

ρy > 0 and ρz > 0.11 The contribution of our Proposition is twofold. First, and most obvious, our

notion of directional Nth-degree risk aversion is more encompassing. More importantly, by making

use of Lemma 1, the proposition characterizes the set of expected utility maximizers that display

Nth-degree risk aversion in the direction of
(
ρy, ρz

)
. This characterization enables us to establish a

direct link between lottery choices and optimal exposure to risk, as we do in the following corollary.

Corollary 2 Let U be a given increasing, strictly concave, infinitely differentiable utility function

on R2+, satisfying Assumption A1. Let us consider (p, µ) ∈ R2+ as given. The following properties

are equivalent:
11Eeckhoudt et al. (2009) showed that if α̃2 <N α̃1 and x̃1 <M x̃2, then the 50-50 lottery [α̃2+ x̃1, α̃1+ x̃2] is an

(N+M)th-degree risk increase over [α̃2+ x̃2, α̃1+ x̃1] in the sense of Ekern (1980), i.e. the second lottery is preferred

by all decision makers with (−1)N+M U (0,N+M) (y, z) ≤ 0. When ρy = 0 and ρz > 0, and for a fixed value of y,

our Proposition deals with the special case in which M = 1. Denuit et al (2010a) proved a multivariate version of

Eeckhoudt et al. (2009)’s results.

14



1. For all initial endowment (K, α̃1), any increase in Nth-degree risk over the second attribute

initial endowment from α̃1 to α̃2 increases the optimal level of the choice variable, i.e. x∗2 ≥ x∗1.

2. The preferences represented by U display Nth-degree risk aversion in the direction of (−p, µ).

This result is quite intuitive. It establishes that, in response to an increase in risk, the consumer’s

optimal level of the choice variable (e.g. the level of savings, of labor supply, of medical care) will

reflect her preferences towards harm disaggregation as defined in this paper. Consider, for instance,

the case of a mean preserving spread and, to be concrete, the problem of precautionary saving with

time-non-separable utility. As explained above, two effects operate. First, a consumer that is

prudent (in second period consumption) would like to allocate a higher level of savings to second

period consumption to mitigate the increase in risk. Second, a higher level of savings implies a

lower level of first period consumption, which a cross-prudent consumer dislikes to match with the

higher risk. As a result, the higher level of risk implies a higher level of savings if the prudence

effect is stronger than the cross-prudence effect, i.e. −pU (1,2)(y, z)+µU (0,3)(y, z) > 0, where in this

context p = 1 and µ is the non-stochastic rate of return. Equivalently, savings increase in response

to the higher risk if the consumer displays 2nd-degree risk aversion in the direction of (−p, µ), so he

or she always prefers the lottery [(y − px2, z + x2µ+ α̃2) ; (y − px1, z + x1µ+ α̃1)] over the lottery

[(y − px1, z + x1µ+ α̃2) ; (y − px2, z + x2µ+ α̃1)] , where x2 > x1, α̃2 <2 α̃1, and the attributes of

the lotteries represent consumption at two different dates.

Similarly, consider a decrease in second period income with certainty. A consumer that is

risk averse (in second period consumption) would like to mitigate this harm by increasing sav-

ings. The harm will then be present when first period consumption is lower, which a correlation

averse individual dislikes. Savings will increase when the risk aversion effect is stronger than

the correlation aversion effect, i.e. −pU (1,1)(y, z) + µU (0,2)(y, z) < 0. Equivalently, savings will

increase if the consumer displays 1st-degree risk aversion in the direction of (−p, µ), so he or

she always prefers the lottery [(y − px2, z + x2µ+ α2) ; (y − px1, z + x1µ+ α1)] over the lottery

[(y − px1, z + x1µ+ α2) ; (y − px2, z + x2µ+ α1)] , where x2 > x1 and α2 < α1.

Clearly, a similar intuition holds for all of the above-mentioned applications and for increases

in risk of any degree. A decision maker that views risks as mutually aggravating would like to

compensate the higher risk in attribute z with a higher level of the choice variable. Alternatively,

he could compensate the higher risk by reducing the level of the choice variable and, as a result,

by increasing the level of the other attribute. Whether the level of the choice variable increases
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or decreases in response to an increase in risk then depends on the relative strengths of the two

opposite forces. Corollary 2 then shows that evaluating the strength of the two opposite forces is

equivalent to establishing the sign of the function f (0,N)(y, z), or equivalently, characterizing the

decision maker’s preference over the lotteries Aa and Ba (with ρy = −p and ρz = µ).

4.2 Multiplicative Risks

As before, consider the following experiment: the consumer needs to locate
(
x1ρy, x1ρz

)
and(

x2ρy, x2ρz
)
to each of the two (random) outcomes of the lottery (y, z + α̃1) and (y, z + α̃2) where

x2 > x1 ≥ 0 and where α̃2 ≥ 0 is an Nth-degree risk increase over α̃1 ≥ 0. Now, however, the effect

of x1ρz and x2ρz is to scale the risks α̃1 and α̃2. In particular, the consumer evaluates the following

lotteries:

Am =
[(
y + x2ρy, z + x2ρzα̃2

)
;
(
y + x1ρy, z + x1ρzα̃1

)]
(5)

Bm =
[(
y + x1ρy, z + x1ρzα̃2

)
;
(
y + x2ρy, z + x2ρzα̃1

)]
.

We propose the following definitions.

Definition 3 We say that preferences display Nth-degree multiplicative-risk attraction (resp. aver-

sion) in the direction of
(
ρy, ρz

)
if, for all (y, z, x1, x2) such that x2 > x1 ≥ 0 and for all pairs of

random variables (α̃1, α̃2) such that α̃2 is an increase in Nth-degree risk over α̃1, we have Am � Bm
(resp. Bm � Am).

To understand the different forces at play in such preference ordering, consider first the case

with ρy = 0 and a fixed value of y analyzed by Chiu et al. (2012). On the one hand, since x2 > x1,

the higher risk in Am is scaled up, which hurts a consumer that dislikes higher risks. On the

other hand, x2 > x1 also implies that the distribution of z + x2ρzα̃2 is shifted upwards relative to

z + x1ρzα̃1. As in the previous section, this implies that an individual that prefers to disaggregate

harms would like to match this higher level of z with the higher risk, making Am relatively more

attractive than Bm. Therefore, as stated by Chiu et al. (2012), the choice of Am over Bm will

depend on the relative strengths of these two opposite effects. If we now allow ρy to differ from

zero we have, as in the previous section, another effect that arises from the consumer’s preference

to match the higher risk with a higher level of the other attribute (y). If ρy > 0 this additional

effect will make Am more desirable than Bm for an individual that prefers to disaggregate harms,
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while the opposite will be true if ρy < 0. In the next, we will focus on the case ρy ≤ 0 and this

tends to make Bm more desirable than Am for an individual that prefers to disaggregate harms.12

It is in reference to this situation that we choose to call Nth-degree risk aversion the fact that Bm

is preferred to Am and to call Nth-degree risk-attraction the opposite behavior.

The following Proposition establishes precisely the different forces at play in an expected utility

model and for general increases in Nth-degree risk.

Proposition 4 Let U be a given increasing, strictly concave and infinitely differentiable utility

function on R2+ and let ρy ≤ 0 and ρz ≥ 0 be given. The preferences represented by U display

Nth-degree multiplicative-risk attraction (resp. aversion) in the direction of
(
ρy, ρz

)
if and only if

(−1)N U (1,N)(y, z) ≤ 0 (resp. ≥ 0), (−1)N U (0,N)(y, z) ≥ 0 (resp. ≤ 0) and RN (y, z) ≤ N.

Note that the characterizations depend on
(
ρy, ρz

)
only through their signs. Therefore, we will

say that the preferences represented by U display Nth-degree multiplicative-risk aversion (attraction)

in the direction of R−×R+ in order to say that they display Nth-degree multiplicative-risk aversion

(attraction) in the direction of some
(
ρy, ρz

)
∈ R− × R+ or equivalently in the direction of all(

ρy, ρz
)
∈ R− × R+. We have then the following immediate corollary.

Corollary 3 Let U be a given increasing, strictly concave and infinitely differentiable utility func-

tion satisfying Assumption A2. The following properties are equivalent:

1. For all initial endowment (K,α) and all asset cost and payoff (p, µ̃1) such that x
∗
1 ≥ 0, any

increase in Nth-degree risk over the asset’s payoff from µ̃1 to µ̃2 increases (resp. decreases)

the optimal level of the choice variable, i.e. x∗2 ≥ x∗1 (resp. x∗1 ≤ x∗2).

2. The preferences represented by U display Nth-degree multiplicative-risk attraction (resp. aver-

sion) in the direction of R− × R+.

In other words, an individual will always decrease the demand for the asset in problem PU,K,p(α, µ̃)

when the asset’s payoff is subject to an increase in Nth-degree risk if and only if he or she always

selects lottery Bm over lottery Am. Similarly, an individual will always increase the demand for the

asset in problem PU,K,p(α, µ̃) when the asset’s payoff is subject to an increase in Nth-degree risk if

and only if he or she always selects lottery Am over lottery Bm. However, as it is clear from Propo-

sition 4, no individual for which (−1)N U (0,N)(y, z) ≤ 0 (e.g. for N = 2, risk averse individuals) can

12The case with ρy ≤ 0 and ρz ≥ 0 is the relevant scenario to interpret the conditions found in Section 3.
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also display Nth-degree multiplicative-risk attraction in the direction of R− × R+. Therefore, no

such individual will always prefer lottery Am over lottery Bm, or equivalently, no such individual

will always increase the demand for the asset in problem PU,K,p(α, µ̃). We emphasize again that

the "only if" part of Proposition 4 is the critical ingredient to provide a direct link between lottery

choices and the optimal exposure to risk.

As an example, suppose that PU,K,p(α, µ̃) represents the classic labor supply problem with labor

income risk, and consider a 2nd-degree risk increase. Given the higher risk, prudent individuals

would like to mitigate the harm by increasing the supply of labor. Doing so, however, scales up the

risk, which all risk-averse consumers dislike. In addition, a higher supply of labor implies that the

higher risk is coupled with a lower level of leisure, and this is disliked by all cross prudent individuals.

Whether the supply of labor increases or decreases then depends on the relative strength of these

different forces. For consumers that are both risk averse and cross prudent, the supply of labor

will always decrease if the coeffi cient of 2nd-degree relative risk aversion (i.e. relative prudence)

is smaller than two. Equivalently, these consumers will always prefer lottery Bm over lottery Am,

where the attributes of the lotteries represent leisure and consumption,
(
ρy, ρz

)
= (−1, 1), and

α̃2 <2 α̃1. For all other risk averse individuals, the higher risk will have an ambiguous effect

on the supply of labor, and their preference over lotteries Bm and Am will depend on the initial

endowments of leisure and consumption.

Remark. As mentioned above, Chiu et al. (2012) analyzed the univariate case with ρy = 0

and y fixed. They conclude that (Theorem 2): (using our notation) given (−1)n U (0,n)(y, z) ≤ 0 for

n = N,N + 1, then Am � (≺)Bm if and only if (−1)N
(
xU (0,N+1)(y, x+ z) +NU (0,N)(y, x+ z)

)
≥

(≤) 0 for all x ≥ 0. As it is clear from the proof of Proposition 4, the second part of this statement

is equivalent to our results when ρy = 0. We remark that the "only if" part follows from Lemma 1.

Furthermore, our proof also clarifies that the assumption (−1)N U (0,N)(y, z) ≤ 0 is not consistent

with the condition (−1)N
(
xU (0,N+1)(y, x+ z) +NU (0,N)(y, x+ z)

)
≥ 0. In fact, as stated in

Proposition 4, the condition (−1)N U (0,N)(y, z) ≥ 0 is necessary for an individual to always prefer

Am over Bm in an expected utility framework.

5 Concluding Remarks

Given the ubiquitous presence of uncertainty in most economic decisions, it is not surprising that

a large amount of research has been devoted towards understanding the economic consequences of
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changes in risk. The work of Professor Eeckhoudt has been of fundamental importance towards that

goal, raising and answering new questions and also looking for new answers to classical questions.

Professor Eeckhoudt’s work has also stimulated a large amount of research in this area and this

paper has been a result of such inspiration.

This paper complements Professor Eeckhoudt’s work in two important ways. First, we establish

the minimum set of necessary and suffi cient conditions for unambiguous comparative statics of

changes in risk in the large class of problems involving bidimensional consequences. Second, we link

these conditions with more primitive attitudes towards risk in the form of preferences over simple

lottery pairs. In particular, we show that making unambiguous statements about the ordering of

a particular class of lottery pairs is equivalent to making unambiguous statements regarding the

optimal response to changes in risk in the problems under consideration.

In this paper, we considered separately the case in which the risk is additive and the case in

which the risk is multiplicative. It would be interesting to analyze the case in which both risks are

present and to evaluate the impact on optimal choice of bivariate stochastic dominance shifts. In

this case, again, the recent work of Eeckhoudt and colleagues on a characterization of multivariate

stochastic dominance that is connected with a basic preference to disaggregate harms (e.g. Denuit

et al. 2010a) and on the consequences of shifts in the dependence structure of two random variables

(Denuit et al. 2010b, Denuit et al. 2011) may provide some hints on how to generalize our results

of Sections 3 and 4.

Appendix A. Increases in Nth-degree Risk

Proof of Lemma 1

The fact that 2. implies 1. results directly from Ekern (1980). For the sake of completeness we

rederive it. Let (α̃1, α̃2) be such that α̃2 <N α̃1. We have

E [q(α̃2)]− E [q(α̃1)] =

∫ B

0
q(x)dFα̃2(x)−

∫ B

0
q(x)dFα̃1(x)

=

N∑
k=1

(−1)k−1q(k−1)(B)
[
F
[k]
α̃2

(B)− F [k]α̃1
(B)

]
+

∫ B

0
(−1)Nq(N)(x)

[
F
[N ]
α̃2

(x)− F [N ]α̃1
(x)
]
dx.

Since q and its N first derivatives are continuous on R+, they are bounded on all compact

subsets and all our integrals are well defined.
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By definition, all the terms in the sum are equal to 0 and F [N ]α̃2
(x)− F [N ]α̃1

(x) ≥ 0 on [0, B] . By

2., the integral is then nonnegative and E [q(α̃2)] ≥ E [q(α̃1)].

Let us now prove that 1. implies 2. Let q be an N times continuously differentiable function

on R+ such that E [q(α̃2)] ≥ E [q(α̃1)] for all pair (α̃1, α̃2) such that α̃2 <N α̃1. Let, if it exists, α

be a nonnegative real number such that q(N)(α) 6= 0 and let ε denote a positive real number such

that q(N)(t) 6= 0 for t ∈ [α, α+ ε] . The sign of q(N) remains then constant on [α, α+ ε] . Let β̃1 and

β̃2 be two nonnegative bounded above random variables such that β̃2 <N β̃1. Let B be a common

upper bound for β̃1 and β̃2 and let α̃1 = ε
B β̃1 + α and α̃2 = ε

B β̃2 + α. The random variables α̃1

and α̃2 take their values in [α, α+ ε] and it is easy to check that F [k]α̃i
(t) =

(
ε
B

)k−1
F
[k]

β̃i

(
t−α
ε B

)
for

k = 1, 2... and i = 1, 2. Therefore, α̃2 <N α̃1 which implies, by 1., that E [q(α̃2)] ≥ E [q(α̃1)] . We

have

E [q(α̃2)]− E [q(α̃1)] =

∫ α+ε

α
q(x)dFα̃2(x)−

∫ α+ε

α
q(x)dFα̃1(x)

=
N∑
k=1

(−1)k−1q(k−1)(α+ ε)
[
F
[k]
α̃2

(α+ ε)− F [k]α̃1
(α+ ε)

]
+

∫ α+ε

α
(−1)Nq(N)(t)

[
F
[N ]
α̃2

(t)− F [N ]α̃1
(t)
]
dt.

By definition, we have F [k]α̃2
(α+ ε) = F

[k]
α̃1

(α+ ε) for k = 1, ..., N and F [N ]α̃2
(t)− F [N ]α̃1

(t) ≥ 0 and the

inequality is strict for some t in [α, α+ ε] , and even on a neighborhood of t by continuity of F [N ]α̃1

and F [N ]α̃2
. Since the sign of q(N) remains constant on [α, α+ ε] , this gives that (−1)Nq(N)(t) > 0

on [α, α+ ε] and (−1)Nq(N)(x) > 0 for all x such that q(N)(x) 6= 0 which completes the proof.

Proof of Proposition 1

Let us prove that 2. implies 1. Let (α̃1, α̃2) be such that α̃2 <N α̃1 and let q(α) = g(x∗1, α, µ). We

have ∂Ng
∂αN

(x∗1, α, µ) = −pU (1,N) (K − x∗1p, x∗1µ+ α) +µU (0,N+1) (K − x∗1p, x∗1µ+ α) . By 2., we have

(−1)N ∂Ng
∂αN

(x∗1, α, µ) ≥ 0 and (−1)N q(N)(α) ≥ 0. Since α̃i is bounded above (i = 1, 2), x∗1µ + α̃i is

bounded and bounded away from zero and U and its N + 1 first derivatives are bounded on the

convex hull of the set of values taken by (K − x∗1p, x∗1µ+ α̃i). The same applies to q on the convex

hull of the set of values taken by α̃i, i = 1, 2. By Lemma 1, this leads to E [q(α̃1)] ≤ E [q(α̃2)] . By

definition, we have E [q(α̃1)] = 0, which gives E [q(α̃2)] ≥ 0 or E [g(x∗1, α̃2, µ)] ≥ 0. By concavity of

U, it is easy to check that E [g(x, α̃2, µ)] is a decreasing function of x. Since x∗2 is characterized by

E [g(x∗2, α̃2, µ)] = 0, we obtain that x∗2 ≥ x∗1.
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Let us prove 1. implies 2. As in the proof of Lemma 1, we consider β̃1 and β̃2 two nonnegative

random variables with a common upper bound B such that β̃2 <N β̃1. As above, we introduce the

random variables α̃1,ε = ε
B β̃1 + α∗ and α̃2,ε = ε

B β̃2 + α∗ for some α∗ > 0 and some ε > 0. The

random variables α̃1,ε and α̃2,ε take their values in [α∗, α∗ + ε] and α̃2,ε <N α̃1,ε. Let us consider a

given real number γ and let us define the random variables γ̃i,ε, i = 1, 2, as lotteries giving α̃i,ε with

probability ε and γ with probability 1−ε. The constant γ provides an additional degree of freedom

that will prove useful in order to control the pair (K − x∗1p, x∗1µ+ α) . We have γ̃2,ε <N γ̃1,ε as

an immediate consequence of the stability of this order relation under probability mixtures. Let

x∗1,ε and x∗2,ε be respectively the solutions of PU,K,p(γ̃1,ε, µ) and PU,K,p(γ̃2,ε, µ). By 1., we have

x∗2,ε ≥ x∗1,ε. By definition, we have E
[
g(x∗1,ε, γ̃1,ε, µ)

]
= 0 and E

[
g(x∗2,ε, γ̃2,ε, µ)

]
= 0. By concavity

of U, g is a decreasing function of x and we have E
[
g(x∗1,ε, γ̃2,ε, µ)

]
≥ 0. Let q be defined by

q(α) = g(x∗1,ε, α, µ). We have

E
[
q(γ̃2,ε)

]
− E

[
q(γ̃1,ε)

]
= (E [q(α̃2,ε)]− E [q(α̃1,ε)]) ε

=

N∑
k=1

(−1)k−1q(k−1)(α∗ + ε)
[
F
[k]
α̃2,P

(α∗ + ε)− F [k]α̃1,P
(α∗ + ε)

]
ε

+ε

∫ α∗+ε

α∗
(−1)Nq(N)(t)

[
F
[N ]
α̃2,P

(t)− F [N ]α̃1,P
(t)
]
dt.

By construction, the left side of the equality is nonnegative, all the terms in the sum are equal to

zero and F [N ]α̃2,P
(t) − F [N ]α̃1,P

(t) is nonnegative and nonzero. Note that γ̃i,ε is bounded and bounded

away from zero for i = 1, 2. Therefore q and its first N derivatives are bounded on the convex hull

of the set of values taken by γ̃i,ε, i = 1, 2. Therefore, (−1)Nq(N)(t) is nonnegative at least on a

given subinterval of [α∗, α∗ + ε] . Let α∗ε be in [α∗, α∗ + ε] such that (−1)Nq(N)(α∗ε) ≥ 0. We have

then

(−1)N+1pU (1,N)
(
K − x∗1,εp, x∗1,εµ+ α∗ε

)
+ (−1)NµU (0,N+1)

(
K − x∗1,εp, x∗1,εµ+ α∗ε

)
≥ 0 (6)

where x∗1,ε satisfies

E
[
−pU (1,0)

(
K − x∗1,εp, x∗1,εµ+ γ̃1,ε

)
+ µU (0,1)

(
K − x∗1,εp, x∗1,εµ+ γ̃1,ε

)]
= 0

or

εE
[
g(x∗1,ε,

ε

B
β̃1 + α∗, µ)

]
+ (1− ε)g(x∗1,ε, γ, µ) = 0. (7)

Remark that, until now, α∗,K and γ have been arbitrarily chosen. Let us now choose them

carefully in order to derive our result. Let (Y,Z) be arbitrary in
(
R∗+
)2. By our Inada condition,
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limz→0
U(0,1)(Y,z)

U(1,0)(Y,z)
=∞ and limz→∞

U(0,1)(Y,z)

U(1,0)(Y,z)
= 0 which gives that there exists some z∗ > 0 such that

U(0,1)(Y,z∗)
U(1,0)(Y,z∗)

= p
µ or −pU

(1,0) (Y, z∗)+µU (0,1) (Y, z∗) = 0.We choose x∗ > 0 such that µx∗ < inf(Z, z∗)

and α∗ and K are taken such that α∗ = Z − µx∗ > 0 and K = Y + px∗. Let γ be given by

γ = z∗ − µx∗ > 0. We have

g(x∗, γ̃, µ) = −pU (1,0) (K − x∗p, x∗µ+ γ) + µU (0,1) (K − x∗p, x∗µ+ γ)

= −pU (1,0) (Y, z∗) + µU (0,1) (Y, z∗) = 0.

The solution of Equation (7) for ε = 0 is then given by x∗. In a well chosen neighborhood of

x∗, x 7−→ K − xp and x 7−→ xµ+ ε
B β̃1 +α∗ are bounded and bounded away from 0. The functions

U (1,0) and U (0,1) being continuously differentiable, the function (x, ε) 7−→ εE
[
g(x, εB β̃1 + α∗, µ)

]
+

(1−ε)g(x, γ̃, µ) is then differentiable with respect to x at (x∗, 0). Furthermore, the derivative of this

last function with respect to x at (x∗, 0) is nonzero (concavity of U). The solution x∗1,ε of Equation

(7) is then continuous with respect to ε in a neighborhood of 0 which gives limε→0 x∗1,ε = x∗.

Furthermore, we clearly have limε→0 α∗ε = α∗. Taking the limit in Equation (6) when ε tends to 0,

we obtain

(−1)N+1pU (1,N) (K − x∗p, x∗µ+ α∗) + (−1)NµU (0,N+1) (K − x∗p, x∗µ+ α∗) ≥ 0

or, by construction

(−1)N+1pU (1,N) (Y,Z) + (−1)NµU (0,N+1) (Y, Z) ≥ 0

Proof of Proposition 2

Let us prove that 2. implies 1. Let (µ̃1, µ̃2) be such that µ̃2 <N µ̃1 and let q(µ) = g(x∗1, α, µ).

We have q(N)(µ) = −p (x∗1)
N U (1,N) (K − x∗1p, x∗1µ+ α) + µ (x∗1)

N U (0,N+1) (K − x∗1p, x∗1µ+ α) +

N (x∗1)
N−1 U (0,N) (K − x∗1p, x∗1µ+ α). Since we assumed that x∗1 ≥ 0, by 2, we have

(−1)N p (x∗1)
N U (1,N) (K − x∗1p, x∗1µ+ α) ≤ 0 and

(−1)N
(
x∗1µU

(0,N+1) (K − x∗1p, x∗1µ+ α) +NU (0,N) (K − x∗1p, x∗1µ+ α)
)

= (−1)N
x∗1µ

x∗1µ+ α

(
(x∗1µ+ α)U (0,N+1) (K − x∗1p, x∗1µ+ α) +NU (0,N) (K − x∗1p, x∗1µ+ α)

)
+ (−1)N

αN

x∗1µ+ α
U (0,N) (K − x∗1p, x∗1µ+ α)

≥ 0
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which gives (−1)N q(N)(µ) ≥ 0. Since µ̃i is bounded above (i = 1, 2), x∗1µ̃i + α is bounded and

bounded away from zero and U and its N + 1 first derivatives are bounded on the convex hull of

the set of values taken by (K − x∗1p, x∗1µ̃i + α). The same applies to q on the convex hull of the

set of values taken by µ̃i, i = 1, 2. By Lemma 1, this leads to E [q(µ̃1)] ≤ E [q(µ̃2)] . By definition,

we have E [q(µ̃1)] = 0 which gives E [q(µ̃2)] = E [g(x∗1, α, µ̃2)] ≥ 0. By concavity of U, it is easy to

check that g(x, α, µ) is a decreasing function of x. From there we derive that x∗2 ≥ x∗1.

Let us prove that 1. implies 2. As in the proof of Lemma 1 and Proposition 1, we consider β̃1

and β̃2 two nonnegative random variables with a common upper bound B such that β̃2 <N β̃1.

As above, we introduce the random variables µ̃1,ε = ε
B β̃1 + µ∗ and µ̃2,ε = ε

B β̃2 + µ∗ for some

µ∗ > 0 and some ε > 0. The random variables µ̃1,ε and µ̃2,ε take their values in [µ∗, µ∗ + ε] and

µ̃2,ε <N µ̃1,ε. Let us consider a given γ and let us define the random variables γ̃i,ε, i = 1, 2, as a

lottery that takes the value µ̃i,ε(ω) with probability ε and the value γ with probability 1 − ε. As

previously, we have γ̃2,ε <N γ̃1,ε. Let x
∗
1,ε and x

∗
2,ε be respectively the solutions of PU,K,p(α, γ̃1,ε)

and PU,K,p(α, γ̃2,ε). If x
∗
1,ε is nonnegative then, by 1., we have x

∗
2,ε ≥ x∗1,ε. By definition, we have

E
[
g(x∗1,ε, α, γ̃1,ε)

]
= 0 and E

[
g(x∗2,ε, α, γ̃2,ε)

]
= 0. By concavity of U, g is a decreasing function of

x and we have E
[
g(x∗1,ε, α, γ̃2,ε)

]
≥ 0. Let q be defined by q(µ) = g(x∗1,ε, α, µ). We have

E
[
q(γ̃2,ε)

]
− E

[
q(γ̃1,ε)

]
=

(
E
[
q(µ̃2,ε)

]
− E

[
q(µ̃1,ε)

])
ε

=
N∑
k=1

(−1)k−1q(k−1)(µ∗ + ε)
[
F
[k]
µ̃2,P

(µ∗ + ε)− F [k]µ̃1,P
(µ∗ + ε)

]
ε

+ε

∫ µ∗+ε

µ∗
(−1)Nq(N)(t)

[
F
[N ]
µ̃2,P

(t)− F [N ]µ̃1,P
(t)
]
dt.

By construction, the left side of the equality is nonnegative, all the terms in the sum are equal to

zero and F [N ]µ̃2,P
(t) − F [N ]µ̃1,P

(t) is nonnegative and nonzero. Note that γ̃i,ε is bounded and bounded

away from zero for i = 1, 2. Therefore q and its first N derivatives are bounded on the convex hull

of the set of values taken by γ̃i,ε, i = 1, 2. Therefore, (−1)Nq(N) is nonnegative at least on a given

subinterval of [µ∗, µ∗ + ε] . Let µ∗ε be in [µ∗, µ∗ + ε] such that (−1)Nq(N)(µ∗ε) ≥ 0. We have then

(−1)N+1p
(
x∗1,ε
)N

U (1,N)
(
K − x∗1,εp, x∗1,εµ∗ε + α

)
(8)

+(−1)Nµ∗ε
(
x∗1,ε
)N

U (0,N+1)
(
K − x∗1,εp, x∗1,εµ∗ε + α

)
+(−1)NN

(
x∗1,ε
)N−1

U (0,N)
(
K − x∗1,εp, x∗1,εµ∗ε + α

)
≥ 0
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where x∗1,ε satisfies

E
[
−pU (1,0)

(
K − x∗1,εp, x∗1,εγ̃1,ε + α

)
+ γ̃1,εU

(0,1)
(
K − x∗1,εp, x∗1,εγ̃1,ε + α

)]
= 0

or

εE
[
g(x∗1,ε, α,

ε

B
β̃1 + µ∗)

]
+ (1− ε)g(x∗1,ε, α, γ) = 0. (9)

Remark that, until now p, µ∗, K, α and γ have been arbitrarily chosen. Let us now choose them

carefully in order to derive our result. We assume first that γ is equal to 1. Let x∗ > 0 be given and

let (M,Y,Z) in (R+)3 such that M < Z. We take p = U(0,1)(Y,x∗+Z−M)

U(1,0)(Y,x∗+Z−M)
, K = Y + px∗, α = Z −M

and µ∗ = M
x∗ . By construction, we have α > 0 and we have

g(x∗, α, γ) = −pU (1,0) (K − x∗p, x∗γ + α) + γ̃U (0,1) (K − x∗p, x∗γ + α)

= −pU (1,0) (K − x∗p, x∗ + α) + U (0,1) (K − x∗p, x∗ + α)

= −pU (1,0) (Y, x∗ + Z −M) + U (0,1) (Y, x∗ + Z −M)

= 0.

The solution of Equation (9) for ε = 0 is then given by x∗. In a well chosen neighborhood of x∗,

x 7−→ K − xp and x 7−→ x
(
µ∗ + ε

B β̃1

)
+ α are bounded and bounded away from 0. The functions

U (1,0) and U (0,1) being continuously differentiable, the function (x, ε) 7−→ εE
[
g(x, α, εB β̃1 + µ∗)

]
+

(1− ε)g(x, α, γ) is then differentiable with respect to x at (x∗, 0). Furthermore, the derivative with

respect to x at (x∗, 0) is nonzero. The solution x∗1,ε of Equation (9) is then continuous with respect

to ε in a neighborhood of 0 which gives limε→0 x∗1,ε = x∗ and guarantees that x∗1,ε > 0 for ε small

enough. Since we clearly have limε→0 µ∗ε = µ∗, taking the limit in Equation (8) when ε tends to 0,

we obtain

(−1)N (x∗)N−1
(
−px∗U (1,N) (Y,Z) + µ∗x∗U (0,N+1) (Y,Z) +NU (0,N) (Y,Z)

)
≥ 0

or

(−1)N
(
−px∗U (1,N) (Y,Z) +MU (0,N+1) (Y,Z) +NU (0,N) (Y, Z)

)
≥ 0 (10)

This result being true for all (Y, Z) in
(
R∗+
)2
, all M ∈ (0, Z) all x∗ > 0 and for p =

U(0,1)(Y,x∗+Z−M)

U(1,0)(Y,x∗+Z−M)
. When x∗ goes to 0, Y, M and Z being fixed, x∗U

(0,1)(Y,x∗+Z−M)

U(1,0)(Y,x∗+Z−M)
goes to 0 and we

obtain that

(−1)N
(
MU (0,N+1) (Y, Z) +NU (0,N) (Y,Z)

)
≥ 0
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for all (Y,Z) in
(
R∗+
)2 and all M ∈ (0, Z) or equivalently

(−1)N
(
ZU (0,N+1) (Y, Z) +NU (0,N) (Y,Z)

)
≥ 0 and (−1)NU (0,N) (Y, Z) ≥ 0 for all (Y, Z) in

(
R∗+
)2
.

We assumed that zU
(0,1)(Y,z)

U(1,0)(Y,z)
is unbounded. We then have either limz→0 z

U(0,1)(Y,z)

U(1,0)(Y,z)
= ∞ or

limz→∞ z
U(0,1)(Y,z)

U(1,0)(Y,z)
= ∞. If limz→0 z

U(0,1)(Y,z)

U(1,0)(Y,z)
= ∞, it suffi ces to take x∗ = ζ

2 and M = Z − ζ
2

for ζ arbitrarily small to make the quantity px∗ = U(0,1)(Y,x∗+Z−M)

U(1,0)(Y,x∗+Z−M)
x∗ = 1

2ζ
U(0,1)(Y,ζ)

U(1,0)(Y,ζ)
arbitrar-

ily large. Since M,Y and Z are bounded, Equation (10) gives then (−1)NU (1,N) (Y,Z) ≤ 0. If

limz→∞ z
U(0,1)(Y,z)

U(1,0)(Y,z)
=∞, it suffi ces to take x∗ suffi ciently large to make the quantity x∗+Z−M suf-

ficiently large and U(0,1)(Y,x∗+Z−M)

U(1,0)(Y,x∗+Z−M)
(x∗ + Z −M) arbitrarily large. Since Z is kept fixed, x∗

x∗+Z−M

is arbitrarily close to 1 and px∗ arbitrarily large. Since M,Y and Z are bounded, Equation (10)

gives then (−1)NU (1,N) (Y, Z) ≤ 0.

The Proof of Corollary 1 follows directly by reversing the inequalities above.

Proof of Proposition 3

In an expected utility framework, Nth-degree risk aversion in the direction of
(
ρy, ρz

)
is equivalent

to

1

2
E
[
U
(
y + x2ρy, z + x2ρz + α̃2

)]
− 1

2
E
[
U
(
y + x2ρy, z + x2ρz + α̃1

)]
>

1

2
E
[
U
(
y + x1ρy, z + x1ρz + α̃2

)]
− 1

2
E
[
U
(
y + x1ρy, z + x1ρz + α̃1

)]
.

for all (y, z, x1, x2) ∈ R4+ with x2 > x1. The previous inequation is satisfied for all x2 > x1

if and only if E
[
U
(
y + tρy, z + tρz + α̃2

)]
− E

[
U
(
y + tρy, z + tρz + α̃1

)]
is increasing in t or,

equivalently, if and only if E
[
f
(
y + tρy, z + tρz + α̃2

)]
is larger than E

[
f
(
y + tρy, z + tρz + α̃1

)]
for all (y, z, t) ∈ R3+. This is satisfied if and only if E [f (y, z + α̃2)] is larger than E [f (y, z + α̃1)]

for all (y, z) ∈ R2+. Since we want this inequality to be true for all (α̃1, α̃2) such that α̃2 is an

increase in Nth-degree risk over α̃1, this inequality is equivalent, by Lemma 1, to (−1)N f (0,N) ≥ 0.

Proof of Proposition 4

In an expected utility model, Nth-degree multiplicative-risk attraction in the direction of
(
ρy, ρz

)
is equivalent to

1

2
E
[
U
(
y + x2ρy, z + x2ρzα̃2

)]
− 1

2
E
[
U
(
y + x2ρy, z + x2ρzα̃1

)]
>

1

2
E
[
U
(
y + x1ρy, z + x1ρzα̃2

)]
− 1

2
E
[
U
(
y + x1ρy, z + x1ρzα̃1

)]
(11)
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for all (α̃1, α̃2) such that α̃1 4N α̃2 and all (x1, x2) such that 0 < x1 < x2 and y + xiρy ≥ 0,

i = 1, 2. This inequality is satisfied for all x2 > x1 if and only if E
[
U
(
y + tρy, z + tρzα̃2

)]
−

E
[
U
(
y + tρy, z + tρzα̃1

)]
is increasing on T (y) =

{
t ∈ R+ : y + tρy ≥ 0

}
or, equivalently, if and

only if E [h (α̃2, y, z, t)] is larger than E [h (α̃1, y, z, t)] for all (y, z) ∈ R2+ and for t ∈ T (y) where

h (α, y, z, t) = ρyU
(1,0)

(
y + tρy, z + tρzα

)
+ αρzU

(0,1)
(
y + tρy, z + tρzα

)
. By Lemma 1, this last

inequality is satisfied for every pair (α̃1, α̃2) such that α̃2 is an increase in Nth-degree risk over α̃1

if and only if (−1)N ∂Nh
∂αN
≥ 0.

Simple calculus gives ∂Nh
∂αN

= tNρyρ
N
z U

(1,N) +αtNρN+1z U (0,N+1) +NtN−1ρNz U
(0,N) where deriv-

atives of U are taken at
(
y + tρy, z + αtρz

)
. Since t ≥ 0 and ρz ≥ 0, our necessary and suffi -

cient condition can then be rewritten as (−1)N
(
tρyU

(1,N) + αtρzU
(0,N+1) +NU (0,N)

)
≥ 0 for all

(α, y, z) ∈ R3+ and for t ∈ T (y). Denoting y + tρy by Y and z + αtρz by Z, our necessary and

suffi cient condition is equivalent to (−1)N
(
(Y − y)U (1,N) + (Z − z)U (0,N+1) +NU (0,N)

)
≥ 0 for

all (Y, Z) ∈ R2+ and all (y, z) such that y ≥ Y and 0 ≤ z ≤ Z and where the derivatives are taken

at (Y, Z). Taking successively y = Y and z = Z, y = Y and z = 0 we obtain that (−1)N U (0,N) ≥ 0

and (−1)N
(
ZU (0,N+1) +NU (0,N)

)
≥ 0. Letting y go to ∞, we obtain (−1)N U (1,N) ≤ 0. Con-

versely, if these 3 conditions are satisfied and for a given y ≥ Y, we have (−1)N (Y − y)U (1,N) ≥ 0

and

(−1)N
(

(Z − z)U (0,N+1) +NU (0,N)
)

=
Z − z
Z

(−1)N
(
ZU (0,N+1) +NU (0,N)

)
+
z

Z
(−1)N NU (0,N)

≥ 0

which gives that our necessary and suffi cient condition is satisfied.

A far as Nth-degree multiplicative-risk aversion is concerned, it is characterized by the fact that

E
[
U
(
y + tρy, z + tρzα̃2

)]
−E

[
U
(
y + tρy, z + tρzα̃1

)]
is decreasing on T (y) =

{
t ∈ R+ : y + tρy ≥ 0

}
or, equivalently, by the fact that E [−h (α̃2, y, z, t)] is larger than E [−h (α̃1, y, z, t)] for all (y, z) ∈

R2+ and for t ∈ T (y) or, finally, by (−1)N+1 ∂
Nh
∂αN
≥ 0. The rest of the proof is then directly adapted

from the multiplicative-risk attraction setting.

Appendix B. Nth-Degree Stochastic Dominance

In this appendix we generalize Lemma 1, Propositions 1 and 2, and Corollary 1. We begin by

formalizing the concept of Nth-degree stochastic dominance.

26



Definition 4 (Jean) Let α̃1 and α̃2 denote two random variables with values in [0, B] . We say

that α̃2 is dominated in the sense of Nth-degree stochastic dominance by α̃1, and we denote it by

α̃2 <NSD α̃1, if F
[N ]
α̃2

(x) ≥ F
[N ]
α̃1

(x) for all x ∈ [0, B] where the inequality is strict for some x and

F
[k]
α̃2

(B) ≥ F [k]α̃1
(B) for k = 1, ..., N − 1.

Jean (1980) characterizes Nth-degree stochastic dominance: He establishes that α̃2 is dominated

in the sense of Nth-degree stochastic dominance by α̃1 if and only if E [q(α̃2)] > E [q(α̃1)] for all

N times continuously differentiable real valued function q such that (−1)k q(k) > 0 for k = 1, ..., N

where q(k) = dkq
dαk

. The following Lemma characterizes the set of N times continuously differentiable

functions for which E [q(α̃2)] ≥ E [q(α̃1)] for all pair (α̃1, α̃2) where α̃2 <NSD α̃1.

Lemma 2 Let q be a given real valued function that is N times continuously differentiable on R+.

The following are equivalent.

1. For all pair (α̃1, α̃2) such that α̃2 <NSD α̃1, we have E [q(α̃2)] ≥ E [q(α̃1)] .

2. For all x ≥ 0, we have (−1)k q(k) ≥ 0 for k = 1, ..., N.

Proof. The fact that 2. implies 1. results directly from Jean (1980). Let us now prove

that 1. implies 2. Let q be an N times continuously differentiable function on R+ such that

E [q(α̃2)] ≥ E [q(α̃1)] for all pair (α̃1, α̃2) such that α̃2 <NSD α̃1. Let k be in {1, ..., N} and let

(α̃1, α̃2) such that α̃2 <k α̃1. By definition, we have F [k]α̃2
(x) ≥ F

[k]
α̃1

(x) for all x ∈ [0, B] where

the inequality is strict for some x and F [i]α̃2(B) = F
[i]
α̃1

(B) for i = 1, ..., k − 1. By integration, we

obtain F [j]α̃2 (x) ≥ F
[j]
α̃1

(x) for all j ≥ k and all x in [0, B] and, in particular, α̃2 <NSD α̃1 hence

E [q(α̃2)] ≥ E [q(α̃1)] . By Lemma 2 we have (−1)k q(k) ≥ 0 on [0, B] for k = 1, ..., N.�

The following Proposition establishes the effect on optimal choice of an Nth-degree stochastically

dominated shift on the initial endowment α.

Proposition 5 Let U be a given increasing, strictly concave and infinitely differentiable utility

function satisfying Assumption A1. Let us consider p and µ as given. The following properties are

equivalent:

1. For all initial endowment (K, α̃1), a switch from α̃1 to α̃2 such that α̃2 <NSD α̃1 increases

the optimal level of the choice variable, i.e. x∗2 ≥ x∗1.

2. For all (y, z) , we have (−1)k
(
−pU (1,k) (y, z) + µU (0,k+1) (y, z)

)
≥ 0 for k = 1, ..., N .
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Proof. Let us prove that 2. implies 1. Let (α̃1, α̃2) be such that α̃2 <NSD α̃1 and let

q(α) = g(x∗1, α, µ). By 2., we have (−1)k q(k)(α) ≥ 0 for k = 1, ..., N. By Lemma 2, this leads

to E [q(α̃1)] ≤ E [q(α̃2)] . By definition, we have E [q(α̃1)] = 0, which gives E [q(α̃2)] ≥ 0 or

E [g(x∗1, α̃2, µ)] ≥ 0. By concavity of U, it is easy to check that E [g(x, α̃2, µ)] is a decreasing

function of x. Since x∗2 is characterized by E [g(x∗2, α̃2, µ)] = 0, we obtain that x∗2 ≥ x∗1.

Let us prove 1. implies 2. As in the proof of the Lemma 2, it suffi ces to remark that, for

k = 1, ..., N, α̃2 <k α̃1 implies α̃2 <NSD α̃1.�

Finally, the following Proposition establishes the effect on optimal choice of an Nth-degree

stochastically dominated shift on the multiplicative variable µ.

Proposition 6 Let U be a given increasing, strictly concave and infinitely differentiable utility

function satisfying Assumption A2. The following properties are equivalent:

1. For all initial endowment (K,α) and all asset cost and payoff (p, µ̃1) such that x
∗
1 ≥ 0, and

any switch from µ̃1 to µ̃2 with µ̃2 �NSD µ̃1 increases (decreases) the optimal level of the

choice variable, i.e. x∗2 ≥ x∗1.

2. For all (y, z) , we have (−1)k U (1,k) (y, z) ≤ 0 (resp. ≥ 0) Rk (y, z) ≤ N and (−1)k U (0,k) (y, z) ≥

0 (resp. ≤ 0) for k = 1, ..., N .

Proof. Follows the proof of Proposition 5. �

References

[1] Baiardi, D., Menegatti, M. (2011). Pigouvian Tax, Abatement Policies and Uncertainty on the

Environment, Journal of Economics 103 (3), 221-251.

[2] Block, M.K., Heineke J.M. (1973) The allocation of effort under uncertainty: the case of

risk-averse behavior. Journal of Political Economy 81, 376—385.

[3] Chiu, W.H., Eeckhoudt L. (2010) The effects of stochastic wages and non-labor income on

labor supply: update and extensions. Journal of Economics 100, 69-83.

[4] Chiu, W.H., Eeckhoudt, L., Rey, B. (2012) On relative and partial risk attitudes: Theory and

Implications. Economic Theory 50, 151-167.

28



[5] Courbage, C., Rey, B. (2012) Priority Setting in Health Care and Higher Order Degree Change

in Risk. Journal of Health Economics 31, 484-489.

[6] Dardanoni V. (1988) Optimal choices under uncertainty: the case of two-argument utility

functions. Economic Journal 98, 429—450.

[7] Dardanoni, V., Wagstaff, A. (1990) Uncertainty and the demand for medical care. Journal of

Health Economics 9, 23—38.

[8] Denuit, M., De Vylder, E., Lefevre, C. (1999) Extremal generators and extremal distributions

for the continuous s-convex stochastic orderings. Insurance: Mathematics and Economics 24,

201-217.

[9] Denuit, M., Eeeckhoudt, L., Tsetlin, I., Winkler, R.L. (2010a) Multivariate concave and convex

stochastic dominance. INSEAD working paper 2010/29.

[10] Denuit, M., Eeckhoudt, L., Rey, B. (2010b). Some consequences of correlation aversion in

decision science. Annals of Operations Research 176, 259-269.

[11] Denuit, M., Eeckhoudt, L., Menegatti, M. (2011) Correlated risks, bivariate utility and optimal

choices. Economic Theory 46, 39-54.

[12] Eeckhoudt, L., Schlesinger, H. (2006) Putting risk in its proper place. American Economic

Review 96, 280-289.

[13] Eeckhoudt, L., Schlesinger, H. (2008) Changes in risk and the demand for saving. Journal of

Monetary Economics 55, 1329-1336.

[14] Eeckhoudt, L., Schlesinger, H., Tselin, I. (2009). Apportioning of risks via stochastic domi-

nance. Journal of Economic Theory 144, 994-1003.

[15] Eeckhoudt, L., Rey, B., Schlesinger, H. (2007). A good sign for multivariate risk taking. Man-

agement Science 53, 117-124.

[16] Ekern, S. (1980). Increasing Nth-degree risk. Economics Letters 6, 329—333.

[17] Gollier, C. (2001) The Economics of Risk and Time. M.I.T. Press.

[18] Hadar, J., Seo, T.K. (1990) The effects of shifts in a return distribution on optimal portfolios.

International Economic Review 31, 721-736.

29



[19] Jean, W.H. (1980) The geometric mean and stochastic dominance. Journal of Finance 35,

151-158.

[20] Keenan, D.C., Kim, I., Warren, R.S. (2006) The Private Provision of Public Goods under

Uncertainty: A Symmetric-Equilibrium Approach. Journal of Public Economic Theory 8, 863-

873.

[21] Kimball, M. (1990) Precautionary saving in the small and in the large. Econometrica 58, 58-73.

[22] Leland, H. E. (1968) Saving and uncertainty: The precautionary demand for saving. Quarterly

Journal of Economics 82, 465-73.

[23] Menezes, C., Geiss, C., Tressler, J. (1980). Increasing Downside Risk. American Economic

Review 70, 921-932.

[24] Menezes, C. Wang, X.H. (2005) Increasing outer risk. Journal of Mathematical Economics 41,

875—886.

[25] Rothschild, M., Stiglitz, J. (1970), "Increasing risk I: A definition." Journal of Economic

Theory 2, 225-243.

[26] Rothschild, M., Stiglitz, J. (1971), "Increasing risk II: Its Economic Consequences." Journal

of Economic Theory 3, 66-84.

[27] Sandler, T., Sterbenz, F.P., Posnett, J. (1987) Free riding and uncertainty. European Economic

Review 31, 1605—1617.

[28] Sandmo, A. (1970) The effect of uncertainty on saving decisions. Review of Economic Studies

37, 353-60.

[29] Tressler, J.H., Menezes, C.F. (1980) Labor supply and wage rate uncertainty. Journal of Eco-

nomic Theory 23, 425—436.

30


